试题
题目:
(2011·乐山)如图,在正方形ABCD中,E、F分别是边BC、CD的中点,AE交BF于点H,CG∥AE交BF于点G.下列结论:①tan∠HBE=cot∠HEB;②CG·BF=BC·CF;③BH=FG;④
B
C
2
C
F
2
=
BG
GF
.其中正确的序号是( )
A.①②③
B.②③④
C.①③④
D.①②④
答案
D
解:①∵在正方形ABCD中,E、F分别是边BC、CD的中点,
∴Rt△ABE≌Rt△BCF,
∴∠BEA=∠CFB,
∵CG∥AE,
∴∠GCB=∠AEB
∴∠CFG=∠GCB,
∴∠CFG+∠GCF=90°即△CGF为直角三角形,
∴CG∥AE交BF于点G,
∴△BHE也为直角三角形,
∴tan∠HBE=cot∠HEB;
∴①正确.
②由①可得△CGF∽△BCF,
∴
CG
BC
=
CF
BF
,
∴CG·BF=BC·CF,
∴②正确;
③由①得△BHE≌△CGF,
∴BH=CG,而不是BH=FG
∴③BH=FG错误;
④∵△BCG∽△BFC,
∴
BC
BF
=
BG
BC
,即BC
2
=BG·BF,
同理可得△BCF∽△CGF,
可得CF
2
=BF·GF,
∴
BC
2
CF
2
=
BG
GF
,
∴④正确,综上所述,正确的有①②④.
故选D.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;全等三角形的判定与性质;锐角三角函数的定义.
①根据正方形的性质求证△BHE为直角三角形即可得出结论;
②由①求证△CGF∽△BCF.利用其对应边成比例即可求得结论;
③由①求证△BHE≌△CGF即可得出结论,
④利用相似三角形对应边成比例即可求得结论.
此题主要考查相似三角形的判定与性质,全等三角形的判定与性质,锐角三角函数的定义等知识点的理解和掌握,步骤繁琐,有一定的拔高难度,属于中档题.
压轴题.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )