试题

题目:
青果学院(2011·苏州)如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于(  )



答案
B
青果学院解:连接BD.
∵E、F分別是AB、AD的中点.
∴BD=2EF=4
∵BC=5,CD=3
∴△BCD是直角三角形.
∴tanC=
BD
CD
=
4
3

故选B.
考点梳理
锐角三角函数的定义;勾股定理的逆定理;三角形中位线定理.
根据三角形的中位线定理即可求得BD的长,然后根据勾股定理的逆定理即可证得△BCD是直角三角形,然后根据正切函数的定义即可求解.
本题主要考查了三角形的中位线定义,勾股定理的逆定理,和三角函数的定义,正确证明△BCD是直角三角形是解题关键.
压轴题.
找相似题