试题

题目:
(2011·滨州)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A、B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.
(1)请建立适当的直角坐标系,求抛物线的函数解析式;
(2)为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)
(3)为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P之间的距离是多少青果学院?(请写出求解过程)
答案
解:(1)以点O为原点、射线OC为y轴的正半轴建立直角坐标系,
设抛物线的函数解析式为y=ax2
由题意知点A的坐标为(4,8).
∵点A在抛物线上,青果学院
∴8=a×42
解得a=
1
2

∴所求抛物线的函数解析式为:y=
1
2
x2

(2)找法:
延长AC,交建筑物造型所在抛物线于点D,
则点A、D关于OC对称.
连接BD交OC于点P,则点P即为所求.

(3)由题意知点B的横坐标为2,
∵点B在抛物线上,
∴点B的坐标为(2,2),
又∵点A的坐标为(4,8),
∴点D的坐标为(-4,8),
设直线BD的函数解析式为y=kx+b,
2k+b=2
-4k+b=8

解得:k=-1,b=4.
∴直线BD的函数解析式为y=-x+4,
把x=0代入y=-x+4,得点P的坐标为(0,4),
两根支柱用料最省时,点O、P之间的距离是4米.
解:(1)以点O为原点、射线OC为y轴的正半轴建立直角坐标系,
设抛物线的函数解析式为y=ax2
由题意知点A的坐标为(4,8).
∵点A在抛物线上,青果学院
∴8=a×42
解得a=
1
2

∴所求抛物线的函数解析式为:y=
1
2
x2

(2)找法:
延长AC,交建筑物造型所在抛物线于点D,
则点A、D关于OC对称.
连接BD交OC于点P,则点P即为所求.

(3)由题意知点B的横坐标为2,
∵点B在抛物线上,
∴点B的坐标为(2,2),
又∵点A的坐标为(4,8),
∴点D的坐标为(-4,8),
设直线BD的函数解析式为y=kx+b,
2k+b=2
-4k+b=8

解得:k=-1,b=4.
∴直线BD的函数解析式为y=-x+4,
把x=0代入y=-x+4,得点P的坐标为(0,4),
两根支柱用料最省时,点O、P之间的距离是4米.
考点梳理
二次函数的应用.
(1)以点O为原点、射线OC为y轴的正半轴建立直角坐标系,可设抛物线的函数解析式为y=ax2,又由点A在抛物线上,即可求得此抛物线的函数解析式;
(2)延长AC,交建筑物造型所在抛物线于点D,连接BD交OC于点P,则点P即为所求;
(3)首先根据题意求得点B与D的坐标,设直线BD的函数解析式为y=kx+b,利用待定系数法即可求得直线BD的函数解析式,把x=0代入y=-x+4,即可求得点P的坐标.
此题考查了二次函数的实际应用问题.解此题的关键是根据题意构建二次函数模型,然后根据二次函数解题.
压轴题.
找相似题