试题
题目:
周长为16cm的矩形的最大面积为
16
16
.
答案
16
解:设矩形的一边长为xcm,所以另一边长为(8-x)cm,
其面积为s=x(8-x)=-x
2
+8x=-(x-4)
2
+16,
∴由以上函数图象得:周长为16cm的矩形的最大面积为16.
考点梳理
考点
分析
点评
专题
二次函数的应用.
先根据题意列出函数关系式,再求其最值即可.
此题考查的是二次函数在实际生活中的应用及求二次函数的最大(小)值有三种方法:第一种可由图象直接得出;第二种是配方法;第三种是公式法.常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x
2
-2x+5,y=3x
2
-6x+1等用配方法求解比较简单.
几何图形问题.
找相似题
(2011·济南)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at
2
+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )
(2010·庆阳)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0).若此炮弹在第7秒与第13秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2010·南充)如图,小球从点A运动到点B,速度v(米/秒)和时间t(秒)的函数关系式是v=2t.如果小球运动到点B时的速度为6米/秒,小球从点A到点B的时间是( )
(2010·定西)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2009·台湾)向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax
2
+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )