试题
题目:
如图,某大学的校门是抛物线形水泥建筑物,大门的地面宽为8m,两侧距地面4m高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6m,则校门的高为
9.1
9.1
m(精确到0.1m,水泥建筑物厚度忽略不计).
答案
9.1
解:以地面为x轴,大门左边与地面的交点为原点建立平面直角坐标系,
则抛物线过(0,0)、(8,0)、(1、4)、(7、4)四点,
设该抛物线解析式为:y=ax
2
+bx+c,
∴由题意得到方程组:
c=0
64a+8b+c=0
a+b+c=4
,
解方程组得:
a=-
4
7
b=
32
7
c=0
,
该抛物线解析式为:y=-
4
7
x
2
+
32
7
x,顶点坐标为(4,
64
7
),
则校门的高为
64
7
m≈9.1m.
考点梳理
考点
分析
点评
二次函数的应用.
由题意可知,以地面为x轴,大门左边与地面的交点为原点建立平面直角坐标系,抛物线过(0,0)、(8,0)、(1、4)、(7、4),运用待定系数法求出解析式后,求函数值的最大值即可.
本题涉及二次函数的实际问题,转化为代数方程求解,难度中上.
找相似题
(2011·济南)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at
2
+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )
(2010·庆阳)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0).若此炮弹在第7秒与第13秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2010·南充)如图,小球从点A运动到点B,速度v(米/秒)和时间t(秒)的函数关系式是v=2t.如果小球运动到点B时的速度为6米/秒,小球从点A到点B的时间是( )
(2010·定西)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2009·台湾)向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax
2
+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )