试题

题目:
(2011·老河口市模拟)将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价
5
5
元,最大利润为
625
625
元.
答案
5

625

解:设应降价x元,销售量为(20+x)个,
根据题意得利润y=(100-x)(20+x)-70(20+x)=-x2+10x+600=-(x-5)2+625,
故为了获得最大利润,则应降价5元,最大利润为625元.
考点梳理
二次函数的应用.
先根据题意列出函数关系式,再求其最值即可.
此题考查的是二次函数在实际生活中的应用及求二次函数的最大(小)值有三种方法:第一种可由图象直接得出;第二种是配方法;第三种是公式法.常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比较简单.
销售问题.
找相似题