试题
题目:
某市举行钓鱼比赛,如图,选手甲钓到了一条大鱼,鱼竿被拉弯近似可看作以A为最高点的一条抛物线,鱼线AB长6m,鱼隐约在水面了,估计鱼离鱼竿支点有8m,此时鱼竿鱼线呈一个平面,且与水平面夹脚α恰好为60°,以鱼竿支点为原点,则鱼竿所在抛物线的解析式为
y=-
3
3
25
(x-5)
2
+3
3
y=-
3
3
25
(x-5)
2
+3
3
.
答案
y=-
3
3
25
(x-5)
2
+3
3
解:过点A作AC⊥OB,交OB于点C,
∵AB=6米,OB=8米,α=60°,
∴AC=ABsin∠α=3
3
米,BC=ACcos∠α=3米,
∴OC=OB-BC=5米,
故可得点A的坐标为(5,3
3
),
设函数解析式为y=a(x-5)
2
+3
3
,
又∵函数经过原点,
∴a(0-5)
2
+3
3
=0,
解得:a=-
3
3
25
,
故函数解析为:y=-
3
3
25
(x-5)
2
+3
3
.
故答案为:y=-
3
3
25
(x-5)
2
+3
3
.
考点梳理
考点
分析
点评
二次函数的应用.
过点A作AC⊥OB,交OB于点C,在RT△ABC中,可求出AC、BC,然后根据OB=8米,可得出点A的坐标,根据二次函数过原点及二次函数的顶点坐标即可确定二次函数解析式.
此题考查了二次函数的应用,关键是利用几何知识求出点A的坐标,另外要掌握二次函数的一般式及顶点式的特点,有一定难度.
找相似题
(2011·济南)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at
2
+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )
(2010·庆阳)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0).若此炮弹在第7秒与第13秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2010·南充)如图,小球从点A运动到点B,速度v(米/秒)和时间t(秒)的函数关系式是v=2t.如果小球运动到点B时的速度为6米/秒,小球从点A到点B的时间是( )
(2010·定西)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2009·台湾)向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax
2
+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )