试题
题目:
一司机发现前面有一不明物体,于是采取紧急刹车,汽车刹车后行驶距离S(m)与行驶时间t(s)之间的函数关系式为S=20t-5t
2
,则这个物体至少在
20
20
米以外,司机刹车后才不会撞到物体.
答案
20
解:函数关系式为s=20t-5t
2
,
变形得,s=-5(t-2)
2
+20,
所以当t=2时,汽车滑行距离最远为:s=20m;
故这个物体至少在20米以外,司机刹车后才不会撞到物体.
故答案为:20.
考点梳理
考点
分析
点评
二次函数的应用.
函数关系式为s=20t-5t
2
,变形得s=-5(t-2)
2
+20,即求函数的最值问题,所以,当t=2时,由于惯性汽车要滑行最远,可解答.
本题考查了二次函数的应用,即考查二次函数的最值问题,解答关键是弄懂题意,熟练对函数式变形,从而取得最值.
找相似题
(2011·济南)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at
2
+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )
(2010·庆阳)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0).若此炮弹在第7秒与第13秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2010·南充)如图,小球从点A运动到点B,速度v(米/秒)和时间t(秒)的函数关系式是v=2t.如果小球运动到点B时的速度为6米/秒,小球从点A到点B的时间是( )
(2010·定西)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2009·台湾)向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax
2
+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )