试题
题目:
(2012·吴中区二模)广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(米)关于水珠与喷头的水平距离x(米)的函数解析式是y=-
3
2
x
2
+6x(0≤x≤4).水珠可以达到的最大高度是
6
6
(米).
答案
6
解:∵y=-
3
2
x
2
+6x,
=-
3
2
(x
2
-4x),
=-
3
2
[(x-2)
2
-4],
=-
3
2
(x-2)
2
+6,
∴当x=2时,y有最大值6,
∴水珠可以达到的最大高度为6米.
故答案为:6.
考点梳理
考点
分析
点评
二次函数的应用.
先把函数关系式配方,求出函数的最大值,即可得出水珠达到的最大高度.
本题考查了二次函数的实际应用,关键是把二次函数变形,求出函数的最大值,此题为数学建模题,借助二次函数解决实际问题.
找相似题
(2011·济南)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at
2
+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )
(2010·庆阳)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0).若此炮弹在第7秒与第13秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2010·南充)如图,小球从点A运动到点B,速度v(米/秒)和时间t(秒)的函数关系式是v=2t.如果小球运动到点B时的速度为6米/秒,小球从点A到点B的时间是( )
(2010·定西)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2009·台湾)向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax
2
+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )