试题
题目:
(2002·兰州)某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图所示);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间的函数图象是线段(如图所示),若生产出的产品都能在当年销售完,则年产量是
1000
1000
吨时,所获毛利润最大(毛利润=销售额-费用).
答案
1000
解:(1)设年产量为x吨,费用为y(万元),销售单价为z(万元),则0≤x≤1000,
由图(1)知将点(1000,1000)代入到y=ax
2
可求得y=
1
1000
x
2
;
(2)由图(2),设年产量为x吨,销售单价为z万元/吨,
解析式为z=-
1
100
x+30,
则利润s=zx-
1
1000
x
2
=-
11
1000
x
2
+30x,
当x=
30
2×
11
1000
=
15000
11
吨时,毛利润最大.
但此时
15000
11
>1000,不合题意,x=1000.
故答案为1000吨.
考点梳理
考点
分析
点评
专题
二次函数的应用.
本题考查二次函数最小(大)值的求法,先将图中所示的信息用解析式表示出来,再根据题意解答.
本题是根据图象确定两个函数关系的解析式,综合运用函数的知识解决问题.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x
2
-2x+5,y=3x
2
-6x+1等用配方法求解比较简单.
压轴题.
找相似题
(2011·济南)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at
2
+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )
(2010·庆阳)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0).若此炮弹在第7秒与第13秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2010·南充)如图,小球从点A运动到点B,速度v(米/秒)和时间t(秒)的函数关系式是v=2t.如果小球运动到点B时的速度为6米/秒,小球从点A到点B的时间是( )
(2010·定西)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2009·台湾)向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax
2
+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )