试题
题目:
(2012·襄阳)某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x-1.5x
2
,该型号飞机着陆后滑行
600
600
m才能停下来.
答案
600
解:∵a=-1.5<0,
∴函数有最大值.
∴y
最大值
=
4ac-
b
2
4a
=
-60
2
4×(-1.5)
=600,
即飞机着陆后滑行600米才能停止.
故答案为:600.
考点梳理
考点
分析
点评
二次函数的应用.
根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.
此题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键.
找相似题
(2011·济南)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at
2
+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )
(2010·庆阳)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0).若此炮弹在第7秒与第13秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2010·南充)如图,小球从点A运动到点B,速度v(米/秒)和时间t(秒)的函数关系式是v=2t.如果小球运动到点B时的速度为6米/秒,小球从点A到点B的时间是( )
(2010·定西)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2009·台湾)向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax
2
+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )