试题
题目:
小明从地面竖直上抛一个小球,小球上升的高度h与时间t成二次函数关系,已知当t=2秒时和t=4秒时小球的高度是相等的,则下列时刻中小球的高度最高的是( )
A.2秒
B.2.5秒
C.3.7秒
D.5秒
答案
B
解:∵当t=2秒时和t=4秒时小球的高度是相等的,
∴此函数的对称轴为:t=3,
∵2.5最接近3,
∴各选项中时刻中小球的高度最高的是2.5秒.
故选:B.
考点梳理
考点
分析
点评
二次函数的应用.
根据题中已知条件求出函数的对称轴t=3,再利用四个选项中的时间越接近3小球就越高.
本题主要考查了二次函数的实际应用,分析题意,找到关键描述语,得出函数对称轴是解决问题的关键.
找相似题
(2011·济南)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at
2
+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )
(2010·庆阳)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0).若此炮弹在第7秒与第13秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2010·南充)如图,小球从点A运动到点B,速度v(米/秒)和时间t(秒)的函数关系式是v=2t.如果小球运动到点B时的速度为6米/秒,小球从点A到点B的时间是( )
(2010·定西)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax
2
+bx+c(a≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )
(2009·台湾)向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax
2
+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )