试题

题目:
(2013·启东市一模)如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为(  )
青果学院



答案
C
解:∵高CH=1cm,BD=2cm,
而B、D关于y轴对称,
∴D点坐标为(1,1),
∵AB∥x轴,AB=4cm,最低点C在x轴上,
∴AB关于直线CH对称,
∴左边抛物线的顶点C的坐标为(-3,0),
∴右边抛物线的顶点C的坐标为(3,0),
设右边抛物线的解析式为y=a(x-3)2
把D(1,1)代入得1=a×(1-3)2,解得a=
1
4

故右边抛物线的解析式为y=
1
4
(x-3)2
故选C.
考点梳理
二次函数的应用.
利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(-3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式.
本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.
应用题.
找相似题