试题
题目:
抛物线y=(m-1)x
2
+2x+
1
2
m图象与坐标轴有且只有2个交点,则m=
-1或2或0
-1或2或0
.
答案
-1或2或0
解:∵抛物线y=(m-1)x
2
+2x+
1
2
m图象与坐标轴有且只有2个交点,
而抛物线与y轴始终有一个交点,
∴与x轴只有一个交点,
∴△=4-2(m-1)m=0,
∴m=-1或2,
另外当m=0时,y=-x
2
+2x与x轴的一个交点(0,0)正好是与y轴的交点,
即此时也与坐标轴只有两个交点,
故答案为:m=-1或2或0.
考点梳理
考点
分析
点评
专题
根与系数的关系;二次函数的性质.
由于抛物线y=(m-1)x
2
+2x+
1
2
m图象与坐标轴有且只有2个交点,而抛物线与y轴始终有一个交点,所以得到与x轴只有一个交点,那么判别式为0,由此可以得到关于m的方程,解方程即可求出m的值,另外当m=0时与x轴的一个交点(0,0)正好是与y轴的交点,即可求出答案.
本题综合考查了根的判别式和根与系数的关系及二次函数的性质,在解不等式时一定要注意数值的正负与不等号的变化关系.
综合题.
找相似题
(2013·益阳)抛物线y=2(x-3)
2
+1的顶点坐标是( )
(2013·台湾)坐标平面上有一函数y=-3x
2
+12x-7的图形,其顶点坐标为何?( )
(2013·日照)如图,已知抛物线y
1
=-x
2
+4x和直线y
2
=2x.我们约定:当x任取一值时,x对应的函数值分别为y
1
、y
2
,若y
1
≠y
2
,取y
1
、y
2
中的较小值记为M;若y
1
=y
2
,记M=y
1
=y
2
.下列判断:
①当x>2时,M=y
2
;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.
其中正确的有( )
(2013·兰州)二次函数y=2(x-1)
2
+3的图象的顶点坐标是( )
(2013·河南)在二次函数y=-x
2
+2x+1的图象中,若y随x的增大而增大,则x的取值范围是( )