试题
题目:
(2013·崇明县一模)请你写出一个抛物线的表达式,此抛物线满足对称轴是y轴,且在y轴的左侧部分是上升的,那么这个抛物线表达式可以是
y=-x
2
等
y=-x
2
等
.
答案
y=-x
2
等
解:依题意,得满足题意的抛物线解析式为
y=-x
2
等,本题答案不唯一.
故本题答案为:y=-x
2
.
考点梳理
考点
分析
点评
专题
二次函数的性质.
抛物线的对称轴即为顶点横坐标的值,根据顶点式写出抛物线的表达式.
本题主要考查二次函数的性质的知识点,此题是开放性试题,考查函数图形及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.
开放型.
找相似题
(2013·益阳)抛物线y=2(x-3)
2
+1的顶点坐标是( )
(2013·台湾)坐标平面上有一函数y=-3x
2
+12x-7的图形,其顶点坐标为何?( )
(2013·日照)如图,已知抛物线y
1
=-x
2
+4x和直线y
2
=2x.我们约定:当x任取一值时,x对应的函数值分别为y
1
、y
2
,若y
1
≠y
2
,取y
1
、y
2
中的较小值记为M;若y
1
=y
2
,记M=y
1
=y
2
.下列判断:
①当x>2时,M=y
2
;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.
其中正确的有( )
(2013·兰州)二次函数y=2(x-1)
2
+3的图象的顶点坐标是( )
(2013·河南)在二次函数y=-x
2
+2x+1的图象中,若y随x的增大而增大,则x的取值范围是( )