试题
题目:
(2010·达州)请写出符合以下两个条件的一个函数解析式
y=-
2
x
,y=x+3,y=-x
2
+5等
y=-
2
x
,y=x+3,y=-x
2
+5等
①过点(-2,1),②在第二象限内,y随x增大而增大.
答案
y=-
2
x
,y=x+3,y=-x
2
+5等
解:符合条件的函数可以是一次函数、反比例函数、二次函数,如y=-
2
x
,y=x+3,y=-x
2
+5等
考点梳理
考点
分析
点评
专题
二次函数的性质;一次函数的性质.
可考虑一次函数、反比例函数、二次函数的解析式,本题答案不唯一,只要符合条件即可.
本题是结论开放型题型,可以从我们学习的三个类别的函数上考虑.
开放型.
找相似题
(2013·益阳)抛物线y=2(x-3)
2
+1的顶点坐标是( )
(2013·台湾)坐标平面上有一函数y=-3x
2
+12x-7的图形,其顶点坐标为何?( )
(2013·日照)如图,已知抛物线y
1
=-x
2
+4x和直线y
2
=2x.我们约定:当x任取一值时,x对应的函数值分别为y
1
、y
2
,若y
1
≠y
2
,取y
1
、y
2
中的较小值记为M;若y
1
=y
2
,记M=y
1
=y
2
.下列判断:
①当x>2时,M=y
2
;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.
其中正确的有( )
(2013·兰州)二次函数y=2(x-1)
2
+3的图象的顶点坐标是( )
(2013·河南)在二次函数y=-x
2
+2x+1的图象中,若y随x的增大而增大,则x的取值范围是( )