试题
题目:
有一个二次函数的图象,三位同学分别说出了它的一些特点:
甲:对称轴是直线x=4;
乙:与x轴的两个交点的横坐标是整数,与y轴交点的纵坐标也是整数;
丙:以这三个交点为顶点的三角形的面积为12.
请写出满足上述全部特点的一个二次函数解析式:
y=
1
2
(x-2)(x-6).
y=
1
2
(x-2)(x-6).
.
答案
y=
1
2
(x-2)(x-6).
解:根据题意,设y=a(x-2)(x-6),
∵与坐标轴三个交点为顶点的三角形的面积为12,
∴抛物线与坐标轴的交点坐标可以为(0,6),
∴a(0-2)(0-6)=6,
解得a=
1
2
,
所以,y=
1
2
(x-2)(x-6).
故答案为:y=
1
2
(x-2)(x-6).
考点梳理
考点
分析
点评
专题
二次函数的性质.
利用函数图象对称轴设出抛物线与x轴的交点间的距离为2的交点式解析式,再根据三角形的面积求出与y轴的交点坐标,然后代入求解即可.
本题考查了二次函数的性质,利用交点式解析式设出抛物线解析式更加简便.
开放型.
找相似题
(2013·益阳)抛物线y=2(x-3)
2
+1的顶点坐标是( )
(2013·台湾)坐标平面上有一函数y=-3x
2
+12x-7的图形,其顶点坐标为何?( )
(2013·日照)如图,已知抛物线y
1
=-x
2
+4x和直线y
2
=2x.我们约定:当x任取一值时,x对应的函数值分别为y
1
、y
2
,若y
1
≠y
2
,取y
1
、y
2
中的较小值记为M;若y
1
=y
2
,记M=y
1
=y
2
.下列判断:
①当x>2时,M=y
2
;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.
其中正确的有( )
(2013·兰州)二次函数y=2(x-1)
2
+3的图象的顶点坐标是( )
(2013·河南)在二次函数y=-x
2
+2x+1的图象中,若y随x的增大而增大,则x的取值范围是( )