试题
题目:
(2004·盐城)若直线y=3x+m经过第一,三,四象限,则抛物线y=(x-m)
2
+1的顶点必在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
答案
B
解:∵直线y=3x+m经过第一,三,四象限,
∴m<0,
∴抛物线y=(x-m)
2
+1的顶点(m,1)必在第二象限.
故选B.
考点梳理
考点
分析
点评
二次函数的性质;一次函数的性质.
由直线y=3x+m经过第一,三,四象限可判断m的符号,再由抛物线y=(x-m)
2
+1求顶点坐标,判断象限.
要求掌握直线性质和抛物线顶点式的运用.
找相似题
(2013·益阳)抛物线y=2(x-3)
2
+1的顶点坐标是( )
(2013·台湾)坐标平面上有一函数y=-3x
2
+12x-7的图形,其顶点坐标为何?( )
(2013·日照)如图,已知抛物线y
1
=-x
2
+4x和直线y
2
=2x.我们约定:当x任取一值时,x对应的函数值分别为y
1
、y
2
,若y
1
≠y
2
,取y
1
、y
2
中的较小值记为M;若y
1
=y
2
,记M=y
1
=y
2
.下列判断:
①当x>2时,M=y
2
;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.
其中正确的有( )
(2013·兰州)二次函数y=2(x-1)
2
+3的图象的顶点坐标是( )
(2013·河南)在二次函数y=-x
2
+2x+1的图象中,若y随x的增大而增大,则x的取值范围是( )