试题

题目:
青果学院如图,四边形A1A2A3A4内接于一圆,△A1A2A3的内心是I1,△A2A3A4的内心是I2,△A3A4A1的内心是I3
求证:(1)A2、I1、I2、A3四点共圆;(2)∠I1I2I3=90°.
答案
青果学院证明:(1)如图,连接I1A1,I1A2,I1A3,I2A2和I2A3
∵I1是△A1A2A3的内心,
∴∠I1A1A2=∠I1A1A3=
1
2
∠A2A1A3
∠I1A2A1=∠I1A2A3=
1
2
∠A1A2A3,∠I1A3A1=∠I1A3A2=
1
2
∠A1A3A2
延长A1I1交四边形A1A2A3A4外接圆于P,则
∠A2I1A3=∠A2I1P+∠PI1A3=∠I1A1A2+∠I1A2A1+∠I1A1A3+∠I1A3A1
=
1
2
(∠A2A1A3+∠A1A2A3+∠A2A3A1)+
1
2
∠A2A1A3=90°+
1
2
∠A2A1A3
同理∠A2I2A3=90°+
1
2
∠A2A4A3
又∵四边形A1A2A3A4内接于一圆,
∴∠A2A1A3=∠A2A4A3
∴∠A2I1A3=∠A2I2A3
∴A2、I1、I2、A3四点共圆;
(2)又连接I3A4,则由(1)知A3、I2、I3、A4四点共圆,
∴∠I1I2A3=180°-∠I1A2A3=180°-
1
2
∠A1A2A3
同理∠I3I2A3=180°-∠I3A4A3=180°-
1
2
∠A1A4A3
∴∠I1I2I3=360°-(∠I1I2A3+∠I3I2A3)=
1
2
(∠A1A2A3+∠A1A4A3)=90°.
青果学院证明:(1)如图,连接I1A1,I1A2,I1A3,I2A2和I2A3
∵I1是△A1A2A3的内心,
∴∠I1A1A2=∠I1A1A3=
1
2
∠A2A1A3
∠I1A2A1=∠I1A2A3=
1
2
∠A1A2A3,∠I1A3A1=∠I1A3A2=
1
2
∠A1A3A2
延长A1I1交四边形A1A2A3A4外接圆于P,则
∠A2I1A3=∠A2I1P+∠PI1A3=∠I1A1A2+∠I1A2A1+∠I1A1A3+∠I1A3A1
=
1
2
(∠A2A1A3+∠A1A2A3+∠A2A3A1)+
1
2
∠A2A1A3=90°+
1
2
∠A2A1A3
同理∠A2I2A3=90°+
1
2
∠A2A4A3
又∵四边形A1A2A3A4内接于一圆,
∴∠A2A1A3=∠A2A4A3
∴∠A2I1A3=∠A2I2A3
∴A2、I1、I2、A3四点共圆;
(2)又连接I3A4,则由(1)知A3、I2、I3、A4四点共圆,
∴∠I1I2A3=180°-∠I1A2A3=180°-
1
2
∠A1A2A3
同理∠I3I2A3=180°-∠I3A4A3=180°-
1
2
∠A1A4A3
∴∠I1I2I3=360°-(∠I1I2A3+∠I3I2A3)=
1
2
(∠A1A2A3+∠A1A4A3)=90°.
考点梳理
四点共圆;三角形内角和定理;圆内接四边形的性质.
(1)连接I1A1,I1A2,I1A3,I2A2和I2A3,延长A1I1交四边形A1A2A3A4外接圆于P,根据内心的性质证明∠A2I1A3=90°+
1
2
∠A2A1A3,∠A2I2A3=90°+
1
2
∠A2A4A3,及四边形A1A2A3A4内接于一圆,可证∠A2A1A3=∠A2A4A3,故∠A2I1A3=∠A2I2A3,得出结论;
(2)连接I3A4,仿照(1)的结论证明∴∠I1I2A3=180°-∠I1A2A3=180°-
1
2
∠A1A2A3,以及∠I3I2A3=180°-∠I3A4A3=180°-
1
2
∠A1A4A3,由∠I1I2I3=360°-(∠I1I2A3+∠I3I2A3)证明结论.
本题考查了四点共圆的判定与性质.只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的.
证明题.
找相似题