试题
题目:
(2002·泉州)如图,已知ABCD为⊙O的内接四边形,∠B=40°,AD=CD,则∠ACD=
20
20
度.
答案
20
解:∵四边形ABCD是⊙O的内接四边形
∴∠B+∠D=180°
∵∠B=40°
∴∠D=140°
在△ACD中
∵
AD
=
CD
∴AD=CD
∴∠DAC=∠ACD
∵∠D=140°
∴∠ACD=∠DAC=
1
2
(180°-∠B)=20°.
考点梳理
考点
分析
点评
圆内接四边形的性质.
根据圆内接四边形的对角互补的性质,得∠D=140°,在△ACD中,根据等腰三角形的性质以及三角形的内角和定理,得:∠CAD=∠ACD=20°.
此题综合考查了圆内接四边形的性质、等腰三角形的性质以及三角形的内角和定理等知识的应用能力.
找相似题
(2012·深圳)如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内
OB
上一点,∠BMO=120°,则⊙C的半径长为( )
(2010·台湾)如图1,平行四边形纸片ABCD的面积为120,AD=20,AB=18.今沿两对角线将四边形ABCD剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一线对称图形戊,如图2所示,则图形戊的两对角线长度和( )
(2009·台湾)如图,圆上有A,B,C,D四点,其中∠BAD=80度.若
ABC
,
ADC
的长度分别为7p,11p,则
BAD
的长度为何( )
(2006·菏泽)如图,点A,B,C在⊙O上,∠AOC=80°,则∠ABC的度数为( )
(2005·泸州)如图,四边形ABCD为⊙O的内接四边形,∠BOD=120°,则∠BCD为( )