试题

题目:
四边形ABCD内接于⊙O,BC是⊙O的直径,若∠ADC=120°,则∠ACB等于(  )



答案
A
青果学院解:如图:
∵BC是⊙O的直径,
∴∠BAC=90°,
∵四边形ABCD内接于⊙O,∠ADC=120°,
∴∠B=180°-∠ADC=60°,
∴∠ACB=90°-∠B=30°.
故选A.
考点梳理
圆周角定理;圆内接四边形的性质.
首先根据题意画出图形,然后由BC是⊙O的直径,可得∠BAC=90°,由圆的内接四边形的对角互补,可求得∠B的度数,继而可求得∠ACB的度数.
此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,解题的关键是根据题意画出图形,利用数形结合思想求解,注意掌握半圆(或直径)所对的圆周角是直角与圆的内接四边形的对角互补定理的应用.
找相似题