试题
题目:
(2012·沙县质检)如图,点A、B、C在⊙O上,∠AOB=120°,D在AC延长线上,CD=BC,则∠D=
30°
30°
.
答案
30°
解:∵点A、B、C在⊙O上,∠AOB=120°,
∴∠ACB=
1
2
∠AOB=
1
2
×120°=60°,
∵CD=BC,
∴∠CBD=∠D,
∵∠CBD+∠D=∠ACB,
∴∠D=
1
2
∠ACB=30°.
故答案为:30°.
考点梳理
考点
分析
点评
圆周角定理.
由圆周角定理可求得∠ACB的度数,又由等腰三角形的性质与三角形外角的性质,即可求得答案.
此题考查了圆周角定理、等腰三角形的性质以及三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )