试题
题目:
如图,AB为⊙O的直径,CD为⊙O的弦,∠BCD=34°,则∠ABD=
56°
56°
.
答案
56°
解:连接AD,
∵AB为⊙O的直径,
∴∠ADB=90°,
∴∠DAB+∠ABD=90°,
∵∠DAB=∠BCD=34°,
∴∠ABD=90°-34°=56°,
故答案为:56°.
考点梳理
考点
分析
点评
专题
圆周角定理.
根据AB为⊙O的直径,可以得出AB所对弧为半圆,可以得出∠DCB+∠ABD=90°,即可得出答案.
此题主要考查了圆周角定理的推论,根据已知可以得出∠DCB+∠ABD=90°是解决问题的关键.
压轴题.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )