试题
题目:
如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOQ=
75°
75°
.
答案
75°
解:连结OD,如图,
∵△PQR是⊙O的内接正三角形,
∴PQ=PR=QR,
∴∠POQ=
1
3
×360°=120°,OP⊥QR,
∵BC∥QR,
∴OP⊥BC,
∵四边形ABCD是⊙O的内接正方形,
∴OP⊥AD,∠AOD=90°,
∴弧AP=弧DP,
∴∠AOP=∠DOP,
∴∠AOP=
1
2
×90°=45°,
∴∠AOQ=∠POQ-∠AOP=75°.
故答案为75°.
考点梳理
考点
分析
点评
专题
圆周角定理;垂径定理.
连结OD,根据等边三角形性质得PQ=PR=QR,则∠POQ=
1
3
×360°=120°,根据圆内接等边三角形的性质有OP⊥QR,而BC∥QR,所以OP⊥BC,根据四边形ABCD是⊙O的内接正方形,则OP⊥AD,∠AOD=90°,然后根据垂径定理可得∠AOP=∠DOP=45°,再利用∠AOQ=∠POQ-∠AOP计算即可.
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.
计算题.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )