试题
题目:
(2010·赤峰)如图,AB是⊙O的一条弦,OD⊥AB于点C,交⊙O于点D,点E在⊙O上,∠AED=25°,则∠OBA的度数是
40°
40°
.
答案
40°
解:连接OA,
∵∠AED=25°,
∴∠AOD=50°,
∵OA=OB,OC⊥AB,
∴∠AOB=2∠AOD=2×50°=100°,
∴∠OAB=∠OBA=
180
°
-∠AOB
2
=
180
°
-
100
°
2
=40°.
考点梳理
考点
分析
点评
圆周角定理;垂径定理.
连接OA,由圆周角定理可得∠AOB=2∠AED,再由三角形内角和定理及等腰三角形的性质即可求出∠OBA的度数.
本题考查的是圆周角定理及等腰三角形的性质,解答此题的关键是连接OA,构造出等腰三角形及圆心角,沟通已知角与所求角的关系.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )