试题
题目:
(2012·安徽)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=
60
60
°.
答案
60
解:连接DO并延长,
∵四边形OABC为平行四边形,
∴∠B=∠AOC,
∵∠AOC=2∠ADC,
∴∠B=2∠ADC,
∵四边形ABCD是⊙O的内接四边形,
∴∠B+∠ADC=180°,
∴3∠ADC=180°,
∴∠ADC=60°,
∴∠B=∠AOC=120°,
∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,
∴∠OAD+∠OCD=(∠1+∠2)-(∠ADO+∠CDO)=∠AOC-∠ADC=120°-60°=60°.
故答案为:60°.
考点梳理
考点
分析
点评
专题
圆周角定理;平行四边形的性质.
由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后又三角形外角的性质,即可求得∠OAD+∠OCD的度数.
此题考查了圆周角定理、圆的内接四边形的性质、平行四边形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.
压轴题.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )