试题
题目:
如图⊙O的半径为1,弦AB,CD的长度分别为
2
,1,则弦AB,CD所夹的锐角α=
75°
75°
.
答案
75°
解:连接OA、OB、OC、OD,
∵OA=OB=OC=OD=1,AB=
2
,CD=1,
∴OA
2
+OB
2
=AB
2
,
∴△AOB是等腰直角三角形,△COD是等边三角形,
∴∠OAB=∠OBA=45°,∠ODC=∠OCD=60°,
∵∠CDB=∠CAB,∠ODB=∠OBD,
∴α=180°-∠CAB-∠OBA-∠OBD=180°-∠OBA-(∠CDB+∠ODB)=180°-45°-60°=75°.
故答案是:75°.
考点梳理
考点
分析
点评
专题
圆周角定理;勾股定理的逆定理.
连接OA、OB、OC、OD.构建等腰直角三角形AOD、等边三角形COD,然后利用它们的性质及三角形内角和来求α=180°-∠CAB-∠OBA-∠OBD=75°.
本题考查了勾股定理的逆定理,圆周角的性质,等边三角形的性质以及三角形的内角和定理.本题通过作辅助线“连接OA、OB、OC、OD”构建等腰直角三角形AOD、等边三角形COD,然后利用它们的性质解答问题.
推理填空题.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )