试题

题目:
青果学院如图,AB是⊙O的直径,D、C是⊙O上的两个点,若∠BAC=36°,则∠ADC的度数是
54°
54°

答案
54°

解:∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠BAC=36°,
∴∠B=90°-∠BAC=90°-36°=54°,
∵∠B与∠ADC是同弧所对的圆周角,
∴∠ADC=∠B=54°.
故答案为:54°.
考点梳理
圆周角定理.
先根据圆周角定理求出∠ACB的度数,由直角三角形的性质可得出∠B的度数,再根据同弧所对的圆周角相等即可得出结论.
本题考查的是圆周角定理,即同弧所对的圆周角相等.
探究型.
找相似题