试题
题目:
如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.∠AOD=52°,∠DEB=
26°
26°
.
答案
26°
解:∵在⊙O中,OD⊥AB,
∴
AD
=
BD
,
∵∠AOD=52°,
∴∠DEB=
1
2
∠AOD=26°.
故答案为:26°.
考点梳理
考点
分析
点评
圆周角定理;垂径定理.
由OD⊥AB,根据垂径定理的即可求得
AD
=
BD
,然后由圆周角定理,即可求得答案.
此题考查了圆周角定理以及垂径定理.此题难度不大,注意掌握数形结合思想的应用.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )