试题
题目:
(2006·柳州)如图,在△ABC中,∠A=45°,以BC为直径的⊙O与AB,AC交于E,F.
(1)当AB=AC时,求证:EO⊥FO;
(2)如果AB≠AC,那么EO⊥FO是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.
答案
(1)证明:∵∠A=45°AB=AC,
∴∠B=∠C=67.5°.
∵OE=OB,
∴∠OEB=∠B=67.5°.
∴∠EOB=45°.
同理∠FOC=45°.
∴∠EOF=90°.
(2)解:EO⊥FO仍然成立.
证明:∵∠A=45°,
∴∠B+∠C=135°.
∵OE=OB,OC=OF,
∴∠OEB=∠B,∠OFC=∠C.
∴∠OEB+∠OFC+∠B+∠C=270°.
∴∠BOE+∠FOC=90°.
∴∠EOF=90°.
(1)证明:∵∠A=45°AB=AC,
∴∠B=∠C=67.5°.
∵OE=OB,
∴∠OEB=∠B=67.5°.
∴∠EOB=45°.
同理∠FOC=45°.
∴∠EOF=90°.
(2)解:EO⊥FO仍然成立.
证明:∵∠A=45°,
∴∠B+∠C=135°.
∵OE=OB,OC=OF,
∴∠OEB=∠B,∠OFC=∠C.
∴∠OEB+∠OFC+∠B+∠C=270°.
∴∠BOE+∠FOC=90°.
∴∠EOF=90°.
考点梳理
考点
分析
点评
专题
圆周角定理;等腰三角形的性质.
(1)易得∠B=∠C=67.5°,那么可得∠BOE=∠FOC=45°,可求得EO⊥FO;
(2)方法基本同(1),需证得∠BOE+∠FOC=90°.
当两问属于基本一致的问题时,大致思路也是相类似的.
几何综合题;压轴题.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )