试题
题目:
(2008·长春)已知:如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.
求证:(1)△ABC是等边三角形;
(2)
AE=
1
3
CE
.
答案
证明:(1)连接OD,得OD∥AC;
∴∠BDO=∠A;
又OB=OD,
∴∠OBD=∠ODB;
∴∠OBD=∠A;
∴BC=AC;
又∵AB=AC,
∴△ABC是等边三角形;
(2)如上图,连接CD,则CD⊥AB;
∴D是AB中点;
∵AE=
1
2
AD=
1
4
AB,
∴EC=3AE;
∴AE=
1
3
CE.
证明:(1)连接OD,得OD∥AC;
∴∠BDO=∠A;
又OB=OD,
∴∠OBD=∠ODB;
∴∠OBD=∠A;
∴BC=AC;
又∵AB=AC,
∴△ABC是等边三角形;
(2)如上图,连接CD,则CD⊥AB;
∴D是AB中点;
∵AE=
1
2
AD=
1
4
AB,
∴EC=3AE;
∴AE=
1
3
CE.
考点梳理
考点
分析
点评
专题
等边三角形的判定;圆周角定理.
(1)连接OD,根据切线的性质得到OD⊥DE,从而得到平行线,得到∠ODB=∠A,∠ODB=∠B,则∠A=∠B,得到AC=BC,从而证明该三角形是等边三角形;
(2)再根据在圆内直径所对的角是直角这一性质,推出30°的直角三角形,根据30°所对的直角边是斜边的一半即可证明.
本题中作好辅助线是解题的关键,连接过切点的半径是圆中常见的辅助线作法之一.另外还要掌握等边三角形的判定和性质以及30°的直角三角形的性质.
证明题.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )