圆周角定理;全等三角形的判定;等腰三角形的性质;等边三角形的判定.
(1)连接AD,利用直径所对的圆周角为直角及垂直平分线的性质得到相等的线段AB=AC,联立已知的AB=BC,即可证得△ABC是等边三角形;
(2)连接BE,利用直径所对的圆周角为直角,得到BE⊥AC,然后利用等腰三角形三线合一的性质得出E为AC的中点,继而利用三角形中位线的数量关系求得DE的长度;
(3)根据等边三角形的性质,可以证得△PBD和△AED有一组边DE=BD和一对角∠PBD=∠AED对应相等,所以只要再满足这组角的另一夹边对应相等就可以了.
此题考查的知识点有:圆周角定理、等边三角形的判定、三角形中位线定理以及全等三角形的判定和性质,难度较大.
几何综合题.