试题

题目:
青果学院如图,AO为⊙O的半径,∠ACB=15°.则∠OAB的度数为(  )



答案
A
解:∵∠ACB=15°,
∴∠AOB=2∠ACB=30°,
而OA=OB,
∴∠OAB=∠OBA,
∴∠OAB=
1
2
×(180°-30°)=75°.
故选A.
考点梳理
圆周角定理.
由∠ACB=15°,根据圆周角定理得到∠AOB=2∠ACB=30°,然后在△OAB中,利用三角形的内角和定理即可计算出∠OAB.
本题考查了圆周角定理:一条弧所对的圆周角是它所对的圆心角的一半.也考查了等腰三角形的性质以及三角形的内角和定理.
计算题.
找相似题