试题
题目:
如图,⊙O外接于△ABC,AD为⊙O的直径,∠ABC=30°,则∠CAD的度数( )
A.30°
B.40°
C.50°
D.60°
答案
D
解:∵∠ABC=30°,
∴∠ADC=30°,
∵AD为⊙O的直径,
∴∠DCA=90°,
∴∠CAD=90°-∠ADC=60°.
故选择D.
考点梳理
考点
分析
点评
圆周角定理.
首先由∠ABC=30°,推出∠ADC=30°,然后根据AD为⊙O的直径,推出∠DCA=90°,最后根据直角三角形的性质即可推出∠CAD=90°-∠ADC,通过计算即可求出结果.
本题主要考查圆周角定理,直角三角形的性质,角的计算,关键在于通过相关的性质定理推出∠ADC和∠DCA的度数.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )