试题
题目:
如图AB是⊙O的直径,C是⊙O上的一点,若AC=8cm,AB=10cm,OD⊥BC于点D,求BD的长.
答案
解:∵AB是⊙O的直径,
∴∠ACB=90°;
∵OD⊥BC,
∴OD∥AC,又∵AO=OB,
∴OD是△ABC的中位线,即BD=
1
2
BC;
Rt△ABC中,AB=10cm,AC=8cm;
由勾股定理,得:BC=
AB
2
-
AC
2
=6cm;
故BD=
1
2
BC=3cm.
解:∵AB是⊙O的直径,
∴∠ACB=90°;
∵OD⊥BC,
∴OD∥AC,又∵AO=OB,
∴OD是△ABC的中位线,即BD=
1
2
BC;
Rt△ABC中,AB=10cm,AC=8cm;
由勾股定理,得:BC=
AB
2
-
AC
2
=6cm;
故BD=
1
2
BC=3cm.
考点梳理
考点
分析
点评
圆周角定理;勾股定理;三角形中位线定理.
由于AB是⊙O的直径,根据圆周角定理可得∠ACB=90°,可得出OD∥AC;由于AO=OB,则OD是△ABC的中位线,即BD=DC=
1
2
BC,而BC的值可由勾股定理求得,由此得解.
此题主要考查了圆周角定理、勾股定理、三角形中位线定理等知识,能够正确的判断出BD与BC的关系是解答此题的关键.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )