试题

题目:
青果学院已知正方形内接于⊙O,P是劣弧AD上任意一点,(如图),则∠ABP+∠DCP等于(  )



答案
C
青果学院解:连接AC,
∵四边形ABCD是圆的内接正方形,
∴∠ACD=45°;
而∠ABP=∠ACP,则∠ABP+∠DCP=∠ACD=45°,
故选C.
考点梳理
圆周角定理;正方形的性质.
先连接AC,由于圆的内接正方形将圆分成四等分,所以∠ACD=45°,由于∠ABP、∠ACP对着同一条弧,由圆周角定理知∠ACP=∠ABP,即∠ABP+∠PCD=∠ACD=45°,由此得解.
此题主要考查的是圆内接正多边形的性质以及圆周角定理的应用,难度不大,解题的关键是根据圆周角定理得出∠ABP+∠PCD=∠ACD.
找相似题