试题
题目:
如图,以△ABC的边AB为直径作⊙O,交BC于D点,交AC于E点,BD=DE
(1)求证:△ABC是等腰三角形;
(2)若E是AC的中点,求
BD
的度数.
答案
(1)证明:连接AD,
∵AB是直径,
∴AD⊥BC,
又∵BD=DE,
∴∠BAD=∠EAD,
而AD=AD,
∴△ABD≌△ACE,
∴AB=AC,
即△ABC是等腰三角形;
(2)解:∵AD⊥BC,即△ADC为直角三角形,
而E是AC中点,即DE为斜边AC上的中线,
∴DE=AE,
而BD=DE,
∴
BD
=
DE
=
EA
,
又∵AB是直径,
∴
BD
的度数为
1
3
×180°=60°.
(1)证明:连接AD,
∵AB是直径,
∴AD⊥BC,
又∵BD=DE,
∴∠BAD=∠EAD,
而AD=AD,
∴△ABD≌△ACE,
∴AB=AC,
即△ABC是等腰三角形;
(2)解:∵AD⊥BC,即△ADC为直角三角形,
而E是AC中点,即DE为斜边AC上的中线,
∴DE=AE,
而BD=DE,
∴
BD
=
DE
=
EA
,
又∵AB是直径,
∴
BD
的度数为
1
3
×180°=60°.
考点梳理
考点
分析
点评
专题
圆周角定理;全等三角形的判定与性质;等腰三角形的判定.
(1)连接AD,由AB是直径,得到AD⊥BC,又由BD=DE,则∠BAD=∠EAD,易证AB=AC;
(2)由E是AC的中点,得DE为斜边AC上的中线,即有DE=AE,而BD=DE,所以有
BD
=
DE
=
EA
,而它们的和为半圆,即可求出
BD
的度数.
本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了圆周角的推论:直径所对的圆周角为90度,相等的弦所对应的弧相等.
证明题.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )