试题

题目:
如图,AB为⊙O直径,C为圆上任一点,作弦CD⊥AB,垂足为H.连接OC.
(1)说明∠ACO=∠BCD成立的理由;青果学院
(2)作∠OCD的平分线CE交⊙O于E,连接OE(点D、E可以重合),求出点E在弧ADB的具体位置,并说明理由;
(3)在(2)的条件下,连接AE,判断圆上是否存在点C,使△ACE为等腰三角形?若存在,请你写出∠CAE的度数.(不用写出推理过程)
答案
解:(1)∵CD⊥直径AB,
∴弧BD=弧BC(垂径定理),
∴∠BCD=∠A,
∵OA=OC,
∴∠A=∠ACO,
∴∠ACO=∠BCD;

(2)E为弧ADB的中点.
理由:∵CE平分∠OCD,
∴∠OCE=∠DCE,
∵OE=OC,
∴∠OEC=∠OCE,
∴∠OEC=∠DCE,
∴OE∥CD,
又∵CD⊥AB∴OE⊥AB,
∴E为弧ADB的中点;

(3)当C在优弧ACE上,AC=CE时,∠CAE=67.5°,
当AC=AE时,∠CAE=90°,
当CE=AE时,∠CAE=45°,
当C在劣弧AE上,AC=CE时,∠CAE=22.5°.
解:(1)∵CD⊥直径AB,
∴弧BD=弧BC(垂径定理),
∴∠BCD=∠A,
∵OA=OC,
∴∠A=∠ACO,
∴∠ACO=∠BCD;

(2)E为弧ADB的中点.
理由:∵CE平分∠OCD,
∴∠OCE=∠DCE,
∵OE=OC,
∴∠OEC=∠OCE,
∴∠OEC=∠DCE,
∴OE∥CD,
又∵CD⊥AB∴OE⊥AB,
∴E为弧ADB的中点;

(3)当C在优弧ACE上,AC=CE时,∠CAE=67.5°,
当AC=AE时,∠CAE=90°,
当CE=AE时,∠CAE=45°,
当C在劣弧AE上,AC=CE时,∠CAE=22.5°.
考点梳理
垂径定理;等腰三角形的性质;圆周角定理.
(1)由垂径定理可知弧BD=弧BC,可得∠BCD=∠A,由半径相等,得∠A=∠ACO,推出结论;
(2)E为弧ADB的中点. 由∠ACO=∠BCD及∠OCE=∠DCE,可得∠ACE=∠BCE,得
AE
=
BE
,可证E为弧ADB的中点;
(3)存在.当AC=CE时,∠AOE=90°,则∠ACE=45°,∠CAE=
1
2
(180°-∠ACE),当AC=AE时,∠CAE=90°,当CE=AE时,∠CAE=45°.
本题考查了垂径定理,等腰三角形的性质,圆周角定理.关键是利用垂径定理得出弧相等,圆周角相等.
证明题.
找相似题