试题
题目:
如图,△ABC内接于⊙O,若∠OAB=30°,则∠C的大小为 ( )
A.30°
B.45°
C.60°
D.90°
答案
C
解:在△OAB中,OA=OB(⊙O的半径),
∴∠OAB=∠OBA(等边对等角);
又∵∠OAB=30°,
∴∠OBA=30°;
∴∠AOB=180°-2×30°=120°;
而∠C=
1
2
∠AOB(同弧所对的圆周角是所对的圆心角的一半),
∴∠C=60°;
故选C.
考点梳理
考点
分析
点评
圆周角定理.
根据等腰△OAB的两个底角∠OAB=∠OBA、三角形的内角和定理求得∠AOB=120°;然后由圆周角定理即可求得∠C的度数.
本题主要考查了三角形的内角和定理、圆周角定理.解答此类题目时,经常利用圆的半径都相等的性质,将圆心角置于等腰三角形中解答.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )