试题
题目:
如图,AB是⊙O的直径,C是⊙O上一点,∠ACB的平分线交⊙O于D,且AB=10cm,则AD的长为( )
A.
5
cm
B.5cm
C.
5
2
cm
D.
10
cm
答案
C
解:连接OD.
∵AB是⊙O的直径,
∴∠ACB=∠ADB=90°(直径所对的圆周角是直角);
又∵∠ACB的平分线交⊙O于D,
∴D点为半圆AB的中点,
∴△ABD为等腰直角三角形,
∴AD=AB÷
2
=5
2
cm.
故选C.
考点梳理
考点
分析
点评
专题
圆周角定理;等腰直角三角形.
连接OD.利用直径所对的圆周角是直角、角平分线的性质求得圆周角∠ACD=45°;然后根据同弧所对的圆周角是圆心角的一半求得∠AOD=90°;最后根据在等腰直角三角形AOD中利用勾股定理求AD的长度.
本题考查了圆周角定理、等腰直角三角形的判定与性质.解答该题时,通过作辅助线OD构造等腰直角三角形AOD,利用其性质求得AD的长度的.
证明题.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )