旋转的性质;全等三角形的判定与性质;等边三角形的性质;圆周角定理.
(1)设∠1=x度,把∠2=(60-x)度,∠DBC=(x+60)度,∠4=(x+60)度,∠3=60°加起来等于180度,即可证明D、A、E三点共线;
(2)根据△BCD绕着点C按顺时针方向旋转60°得到△ACE,判断出△CDE为等边三角形,求出∠BDC=∠E=60°,∠CDA=120°-60°=60°,可知DC平分∠BDA;
(3)由②可知,∠BAC=60°,∠E=60°,从而得到∠E=∠BAC.
(4)由旋转可知AE=BD,又∠DAE=180°,DE=AE+AD.而△CDE为等边三角形,DC=DE=DB+BA.
本题考查了旋转的性质、全等三角形的判定与性质、等边三角形的性质、圆周角定理等相关知识,要注意旋转不变性,找到变化过程中的不变量.
压轴题;转化思想.