圆周角定理;一元二次方程的应用;坐标与图形性质;勾股定理;三角形中位线定理;矩形的性质.
(1)设出OC的长为x,表示出OA=x+3,根据矩形的面积公式列出关于x的方程,求出方程的解得到x的值,即可求出OA和OC的长;
(2)由E为BC的中点,得到点D为AD中点,在直角三角形ABE中,根据勾股定理求出AE的长,然后利用两对角相等证明△ABE∽△DFA,根据相似三角形的对应边成比例即可求出DF的长;
(3)由矩形的面积等于三角形AED面积的2倍,得到三角形ABP的面积与三角形OCP的面积之和为5,即可列出y关于x的函数关系式,进而求出x的取值范围;
(4)存在.根据题意画出图形,由AQ与QD垂直得到角AQB与角CQD互余,又角AQB与角BAQ互余,根据同角的余角相等得到角CQD与角BAQ相等,又角B与角DCQ相等都等于直角,所以得到△ABQ与QCD两三角形相似,设BQ=a,则QC=5-a,根据相似三角形对应边成比例列出关于a的方程,求出a的值即可得到点Q的坐标.
此题考查了同学们利用三角形相似的判断与性质、直角三角形的性质以及一元二次方程的应用等知识解决问题的能力,有利于培养同学们的发散思维能力.
综合题.