试题

题目:
青果学院如图,AB是⊙O的直径,C是⊙O上的点,AC=6cm,BC=8cm,∠ACB的平分线交⊙O于点D,求AB和BD的长.
答案
解:如图,∵AB是⊙O的直径,
∴∠ACB=90°,∠ADB=90°.
∴AB=
AC2+BC2
=
62+82
=10(cm).
∵AC=6cm,BC=8cm,
∵CD是∠ACB的平分线,
∴∠ACD=∠BCD,则
AD
=
BD

∴AD=BD,
∴BD=
2
2
AB=5
2
cm.
综上所述,AB和BD的长分别是10cm,5
2
cm.
解:如图,∵AB是⊙O的直径,
∴∠ACB=90°,∠ADB=90°.
∴AB=
AC2+BC2
=
62+82
=10(cm).
∵AC=6cm,BC=8cm,
∵CD是∠ACB的平分线,
∴∠ACD=∠BCD,则
AD
=
BD

∴AD=BD,
∴BD=
2
2
AB=5
2
cm.
综上所述,AB和BD的长分别是10cm,5
2
cm.
考点梳理
圆周角定理;勾股定理;等腰直角三角形.
在直角△ABC中,利用勾股定理可以求得AB的长度;由角平分线的性质得到圆周角∠ACD=∠BCD,则
AD
=
BD
,所以AD=BD,故易证△ABD是等腰直角三角形,通过勾股定理来求BD的长度.
本题考查了圆周角定理、勾股定理以及等腰直角三角形.根据圆周角、弧、弦的关系证得△ABD是等腰直角三角形是解题的关键.
找相似题