试题

题目:
青果学院如图,在⊙O中,∠BAC=60°,∠DAC=30°,AB=2,AD=6,
(1)求∠DCB.    
(2)求CD的长.
答案
青果学院解:(1)∵在⊙O中,∠BAC=60°,∠DAC=30°,
∴∠BAD=∠BAC+∠DAC=90°,
∴∠DCB=180°-∠BAD=90°.

(2)连接BD,
∵∠BAD=90°,AB=2,AD=6,
∴BD=
AB2+AD2
=2
10

∵∠DBC=∠DAC=30°,∠BCD=90°,
∴CD=
1
2
BD=
10

青果学院解:(1)∵在⊙O中,∠BAC=60°,∠DAC=30°,
∴∠BAD=∠BAC+∠DAC=90°,
∴∠DCB=180°-∠BAD=90°.

(2)连接BD,
∵∠BAD=90°,AB=2,AD=6,
∴BD=
AB2+AD2
=2
10

∵∠DBC=∠DAC=30°,∠BCD=90°,
∴CD=
1
2
BD=
10
考点梳理
圆周角定理;含30度角的直角三角形;勾股定理.
(1)由在⊙O中,∠BAC=60°,∠DAC=30°,可求得∠BAD的度数,又由圆的内接四边形的性质,即可求得答案;
(2)由勾股定理即可求得BD的长,又由圆周角定理,可得∠DBC=∠DAC,继而求得答案.
此题考查了圆周角定理、圆的内接四边形的性质以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
找相似题