试题
题目:
已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB长.
答案
解:∵AB是⊙O的直径,弦CD⊥AB,
∴CE=DE,∠AEC=∠DEB=90°,
∵∠B=∠ACD=30°,
在Rt△ACE中,AC=2AE=4cm,
∴CE=
AC
2
-
AE
2
=2
3
(cm),
∴DE=2
3
cm,
在Rt△BDE中,∠B=30°,
∴BD=2DE=4
3
cm.
∴DB的长为4
3
cm.
解:∵AB是⊙O的直径,弦CD⊥AB,
∴CE=DE,∠AEC=∠DEB=90°,
∵∠B=∠ACD=30°,
在Rt△ACE中,AC=2AE=4cm,
∴CE=
AC
2
-
AE
2
=2
3
(cm),
∴DE=2
3
cm,
在Rt△BDE中,∠B=30°,
∴BD=2DE=4
3
cm.
∴DB的长为4
3
cm.
考点梳理
考点
分析
点评
圆周角定理;含30度角的直角三角形;勾股定理;垂径定理.
由AB是⊙O的直径,弦CD⊥AB,根据垂径定理,可得CE=DE,∠AEC=∠DEB=90°,然后由含30°角的直角三角形的性质,即可求得EC与DE的长,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B=30°,继而求得DB的长.
此题考查了圆周角定理、垂径定理、直角三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意掌握垂径定理与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )