试题
题目:
(2002·甘肃)如图,在△ABC中,∠BAC=90°,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为( )
A.1
B.2
C.1+
π
4
D.2-
π
4
答案
A
解:连接AD,OD
∵∠BAC=90°,AB=AC=2
∴△ABC是等腰直角三角形
∵AB是圆的直径
∴∠ADB=90°
∴AD⊥BC
∴点D是BC的中点
∴OD是△ABC的中位线
∴∠DOA=90°
∴△ODA,△ADC都是等腰直角三角形
∴两个弓形的面积相等
∴阴影部分的面积=S
△ADC
=
1
2
AD
2
=1.
故选A.
考点梳理
考点
分析
点评
专题
圆周角定理;等腰直角三角形.
连接AD,OD,根据已知分析可得△ODA,△ADC都是等腰直角三角形,从而得到两个弓形的面积相等,即阴影部分的面积等于△ACD的面积,根据三角形面积公式即可求得图中阴影部分的面积.
本题利用了等腰直角三角形的判定和性质,直径对的圆周角是直角求解.
压轴题.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )