试题
题目:
(2007·舟山)如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC等于( )
A.30°
B.60°
C.90°
D.45°
答案
B
解:∵△ABC正三角形,
∴∠A=60°,
∴∠BPC=60°.
故选B.
考点梳理
考点
分析
点评
专题
圆周角定理;等边三角形的性质.
由等边三角形的性质知,∠A=60°,即弧BC的度数为60°,可求∠BPC=60°.
本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.和等边三角形的性质求解.
压轴题;动点型.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )