试题

题目:
青果学院(2013·东营)将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为(  )



答案
C
青果学院解:如图,过点A作AC⊥OB于C,过点A′作A′C′⊥OB′于C′,
∵△AOB是等腰直角三角形,点B的横坐标为2,
∴OC=AC=
1
2
×2=1,
∵△A′OB′是△AOB绕点O逆时针旋转90°得到,
∴OC′=OC=1,A′C′=AC=1,
∴点A′的坐标为(-1,1).
故选C.
考点梳理
坐标与图形变化-旋转.
过点A作AC⊥OB于C,过点A′作A′C′⊥OB′于C′,根据等腰直角三角形的性质求出OC=AC,再根据旋转的性质可得OC′=OC,A′C′=AC,然后写出点A′的坐标即可.
本题考查了坐标与图形变化-旋转,主要利用了等腰直角三角形的性质,旋转变换只改变图形的位置不改变图形的形状与大小的性质.
找相似题