试题
题目:
(2012·栖霞区一模)如图,已知菱形ABCD与菱形EFGH关于直线BD上某个点成中心对称,则点B的对称点是( )
A.点E
B.点F
C.点G
D.点H
答案
D
解:由于四边形ABCD与四边形EFGH都是菱形,且关于直线BD上某个点成中心对称,
根据中心对称的定义可知,点B的对称点是H.
故选D.
考点梳理
考点
分析
点评
中心对称;菱形的性质.
把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点.由于菱形ABCD与菱形EFGH关于直线BD上某个点成中心对称,根据中心对称的定义可知,点B的对称点是H.
本题结合菱形的性质考查了中心对称,解题的关键是熟悉菱形的性质和中心对称的概念.
找相似题
(2007·晋江市质检)如图,在Rt△ABC中,斜边AB长为8
3
,直角边BC长为12,若扇形ACE与扇形BDE关于点E中心对称,则图中阴影部分的面积约为( )
如图既是轴对称又是中心对称的是( )
如图,△DEC是由△ABC经过了如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称;③将△ABC向下向左各平移1个单位,再以AC的中点为中心作中心对称,其中正确的变换有( )
如图是一个以点A为对称中心的中心对称图形,若∠C=90°,∠B=30°,AC=1,则BB′的长为( )
给出下列说法:①平行四边形既是轴对称图形,也是中心对称图形;②关于某点成中心对称的两个三角形是全等三角形;③菱形的两条对角线将菱形分割成四个全等的直角三角形;④若将一个图形绕某点旋转和另一个图形完全重合,则这两个图形关于这点成中心对称,其中正确的说法是( )