题目:
如图.已知由平行四边形ABCD各顶点向形外一条直线l作垂线,设垂足分别为A′,B′,

C′,D′.
(1)求证:A′A+C′C=B′B+D′D;
(2)如果移动直线l,使它与四边形ABCD的位置关系相对变动得更特殊一些(如l过A,或l交AB,BC等),那么,相应地结论会有什么变化?试作出你的猜想和证明;
(3)如果考虑直线l和平行四边形更一般的关系(如平行四边形变成圆,或某一中心对称图形,垂线AA',BB',CC',DD'只保持平行等),那么又有什么结论,试作出你的猜想和证明.
答案
(1)证明:连接AC、BD相交于点O,过点O作OE⊥l,
在平行四边形ABCD中,对角线AC、BD相交于点O,

则点O为AC、BD的中点,
∴OE分别为梯形AA′C′C,梯形BB′D′D的中位线,
则在梯形AA′C′C中,OE=
(AA′+CC′),
在梯形BB′D′D中,OE=
(BB′+DD′),
∴A′A+C′C=B′B+D′D;
(2)解:上述结论仍然成立.

如下图,连接AC、BD相交于点O,过点O作OE⊥l,
在平行四边形ABCD中,对角线AC、BD相交于点O,
则点O为AC、BD的中点,
∴OE分别为梯形DD′BB′,三角形ACC′的中位线,
∴OE=
(AA′+CC′),OE=
(BB′+DD′),
∴A′A+C′C=B′B+D′D;

(3)解:如平行四边形变成某一中心对称图形时,上述结论仍然成立.
如下图,连接AC、BD相交于点O,过点O作OE⊥l,
在正六边形中,对角线AC、BD相交于点O,
则点O为AC、BD的中点,
∴OE分别为梯形DD′BB′,梯形AA′CC′的中位线,
∴OE=
(AA′+CC′),OE=
(BB′+DD′),
∴A′A+C′C=B′B+D′D.
(1)证明:连接AC、BD相交于点O,过点O作OE⊥l,
在平行四边形ABCD中,对角线AC、BD相交于点O,

则点O为AC、BD的中点,
∴OE分别为梯形AA′C′C,梯形BB′D′D的中位线,
则在梯形AA′C′C中,OE=
(AA′+CC′),
在梯形BB′D′D中,OE=
(BB′+DD′),
∴A′A+C′C=B′B+D′D;
(2)解:上述结论仍然成立.

如下图,连接AC、BD相交于点O,过点O作OE⊥l,
在平行四边形ABCD中,对角线AC、BD相交于点O,
则点O为AC、BD的中点,
∴OE分别为梯形DD′BB′,三角形ACC′的中位线,
∴OE=
(AA′+CC′),OE=
(BB′+DD′),
∴A′A+C′C=B′B+D′D;

(3)解:如平行四边形变成某一中心对称图形时,上述结论仍然成立.
如下图,连接AC、BD相交于点O,过点O作OE⊥l,
在正六边形中,对角线AC、BD相交于点O,
则点O为AC、BD的中点,
∴OE分别为梯形DD′BB′,梯形AA′CC′的中位线,
∴OE=
(AA′+CC′),OE=
(BB′+DD′),
∴A′A+C′C=B′B+D′D.